CONVERTING FACTORS FOR DETERMINING AVERAGE YARDING DISTANCES

FROM SETTING EXTERNAL DISTANCES

A. Landings in center of settings with approximate rectangular shape.

	L Length	₩ Width	Converting Factor
, , , , , , , , , , , , , , , , , , ,	1	。 75	.658
	ì	. 50	.578
	1	. 25	。 523
	1	. 125	.506

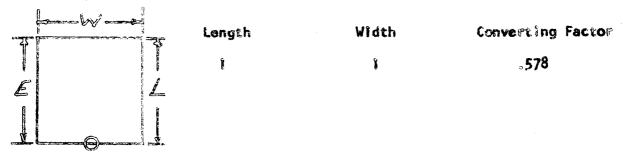
B. Landings at midpoint of short side of settings with approximate rectangular shape.

I W	· ·	Width	Converting Factor
	ן נ	。 75	. 548
	i i	。50	.523
		.25	.50 6

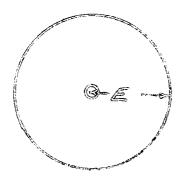
C. Landings at midpoint of long side of settings with approximate Pectangular shape.

W	Length	Vidth	Converting Factor
	¥	1.25	.618
£ 1.00	1	1 .50	.658
G-b-	1	1.75	.699
	Ĭ	2.00	.747
		. 3.00	.943

D. Settings with approximate square shapes. Landing in the middle of a square setting.


	H-W-H	
TE	Ŷ Q	
4		ł /
	i L=b=	

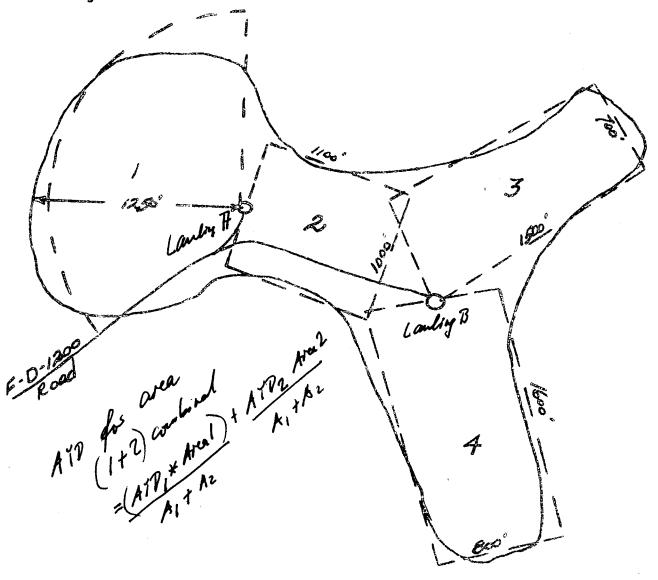
Length	Width	Converting Factor
	. Ge	.747
	the against the second of the	


a & b Sch. 19 Chart 1 yarding distance factors

E = External Distance

Landing on side of a square setting.

E. Settings which approach a circle or segments of a circle.



Landing in center of a circle of at the apex of a circle when E = radius

Converting factor = 0.667

While settings very seldom conform to symmetrical shapes; with care the foregoing factors may be used to advantage.

A theoretical setting, shown below, is used to explain the application to a setting.

- Area 1. External distance is 1250' therefore average skidding distance will equal 1250' x .667 or 837.5 ft. Assum I fan I/M
- Area 2. Approximates a square with the landing on one side 1100' x .578 = 636 foot average skid.
- Area 3. Approximates situation where the landing is in the same situation as in Area 2. 1500' \times .578 \approx 867 foot everage skid.
- Area 4 Approximates a rectangular setting with the landing in the center of the smaller dimension (w) which is half the larger dimension (1). 1600' x .523 = 837 foot skid.

HANDBOOK ON TIMBER APPRAISAL

Figure 2

Table 415.36b

AVERAGE SKIDDING DISTANCE FACTORS 1/

Figure 3

whole	e factor applies to e or either half of angle)	R R	E	
E		"E" Fact		-
	Figure 1	Figure 2	Figure 3	Figure 4
.6	1.01	1.16	.65	Λ
.7	.91	1.01	.59	
.8	.84	• .90	.54	
.9	.79	.81	.50 .47	
1.0	.75	.75	.45	
1.1	.71	.69	.43	
1.2	.68	.65	.42	
1.3	.66	.62	.41	
1.4	.64	.58	.40	
1.5	.63	, <u>55</u>	.39	
1.6	.62	.53	.39	.67
1.7	.61	.51	.38	
1.8	.59	.50	.37	
$\frac{2.0}{2.2}$.58	.47 .45	.37	
2.2	.57		.36	
2.4	.56	.43	.36	
2.6	.55	.42	.35	
2.8	.54	.41	.35	
3.0	.54	.39	.35	
3.2	.53		.35	
3.4	.53	.39	.35	
3.6	.53	.38	.34	
3.8	.52	.38 .37	.34	
4.0+	.52	.3/		<u> </u>

E = External skidding distance.

Figure 1

Determine ratio E/e. Multiply E by factor to determine average skidding distance.

1/ Figures 1-3 factors based on geometry as shown on page 83, item 5, 415.9. Figure 4 based on PNW, RN PNW-24, May 1965, Lysons and Mann, "Correction of Average Yarding Distance Factor for Circular Settings."

Forest Service Handbook

-March 1967 R-6 Amendment No. 106-